
HTTPie: a CLI, cURL-like tool for humans
HTTPie (pronounced aitch-tee-tee-pie) is a command line HTTP client. Its goal is to make CLI interaction
with web services as human-friendly as possible. It provides a simple http command that allows for
sending arbitrary HTTP requests using a simple and natural syntax, and displays colorized output. HTTPie
can be used for testing, debugging, and generally interacting with HTTP servers.

Contents
1 About this document 4

2 Main features 4

3 Installation 6

3.1 macOS 6

3.2 Linux 6

3.3 Windows, etc. 6

3.4 Python version 6

3.5 Unstable version 6

4 Usage 7

4.1 Examples 7

5 HTTP method 8

6 Request URL 8

6.1 Querystring parameters 8

6.2 URL shortcuts for localhost 9

6.3 Other default schemes 9

6.4 --path-as-is 9

7 Request items 10

7.1 Escaping rules 10

8 JSON 11

8.1 Default behaviour 11

8.2 Explicit JSON 11

8.3 Non-string JSON fields 11

8.4 Raw and complex JSON 12

9 Forms 12

9.1 Regular forms 12

9.2 File upload forms 12

10 HTTP headers 13

10.1 Default request headers 13

10.2 Empty headers and header un-setting 13

10.3 Limiting response headers 14

11 Offline mode 14

12 Cookies 14

13 Authentication 15

13.1 Basic auth 15

13.2 Digest auth 15

13.3 Password prompt 15

13.4 Empty password 15

13.5 .netrc 15

13.6 Auth plugins 16

14 HTTP redirects 16

14.1 Follow Location 16

14.2 Showing intermediary redirect responses 16

14.3 Limiting maximum redirects followed 17

15 Proxies 17

15.1 Environment variables 17

15.2 SOCKS 17

16 HTTPS 17

16.1 Server SSL certificate verification 17

16.2 Custom CA bundle 17

16.3 Client side SSL certificate 18

16.4 SSL version 18

17 Output options 18

17.1 What parts of the HTTP exchange should be printed 19

17.2 Viewing intermediary requests/responses 19

17.3 Conditional body download 19

18 Redirected Input 20

18.1 Request data from a filename 21

19 Terminal output 21

19.1 Colors and formatting 21

19.2 Binary data 21

20 Redirected output 22

21 Download mode 22

21.1 Downloaded filename 23

21.2 Piping while downloading 23

21.3 Resuming downloads 23

21.4 Other notes 23

22 Streamed responses 23

22.1 Disabling buffering 24

22.2 Examples use cases 24

23 Sessions 24

23.1 Named sessions 24

23.2 Anonymous sessions 25

23.3 Readonly session 25

24 Config 25

24.1 Config file directory 25

24.2 Configurable options 26

24.2.1 default_options 26

24.3 Un-setting previously specified options 26

25 Scripting 26

25.1 Best practices 27

26 Meta 27

26.1 Interface design 27

26.2 User support 27

26.3 Related projects 28

26.3.1 Dependencies 28

26.3.2 HTTPie friends 28

26.3.3 Alternatives 28

26.4 Contributing 28

26.5 Change log 28

26.6 Artwork 28

26.7 Licence 28

26.8 Authors 28

1 About this document
This documentation is best viewed at httpie.org/docs, where you can select your corresponding HTTPie
version as well as run examples directly from the browser using a termible.io embedded terminal. If you
are reading this on GitHub, then this text covers the current development version. You are invited to
submit fixes and improvements to the the docs by editing README.rst.

2 Main features

• Expressive and intuitive syntax

• Formatted and colorized terminal output

• Built-in JSON support

• Forms and file uploads

• HTTPS, proxies, and authentication

• Arbitrary request data

• Custom headers

• Persistent sessions

• Wget-like downloads

• Linux, macOS and Windows support

• Plugins

• Documentation

• Test coverage

https://httpie.org/docs
https://termible.io?utm_source=httpie-readme
https://github.com/jakubroztocil/httpie/blob/master/README.rst

3 Installation

3.1 macOS
On macOS, HTTPie can be installed via Homebrew (recommended):

$ brew install httpie

A MacPorts port is also available:

$ port install httpie

3.2 Linux
Most Linux distributions provide a package that can be installed using the system package manager, for
example:

Debian, Ubuntu, etc.
$ apt install httpie

Fedora
$ dnf install httpie

CentOS, RHEL, ...
$ yum install httpie

Arch Linux
$ pacman -S httpie

3.3 Windows, etc.
A universal installation method (that works on Windows, Mac OS X, Linux, …, and always provides the
latest version) is to use pip:

Make sure we have an up-to-date version of pip and setuptools:
$ pip install --upgrade pip setuptools

$ pip install --upgrade httpie

(If pip installation fails for some reason, you can try easy_install httpie as a fallback.)

3.4 Python version
Python version 3.6 or greater is required.

3.5 Unstable version
You can also install the latest unreleased development version directly from the master branch on
GitHub. It is a work-in-progress of a future stable release so the experience might be not as smooth.

On macOS you can install it with Homebrew:

https://brew.sh/
https://pip.pypa.io/en/stable/installing/

$ brew install httpie --HEAD

Otherwise with pip:

$ pip install --upgrade https://github.com/jakubroztocil/httpie/archive/master.tar.gz

Verify that now we have the current development version identifier with the -dev suffix, for example:

$ http --version
2.0.0-dev

4 Usage
Hello World:

$ http https://httpie.org/hello

Synopsis:

$ http [flags] [METHOD] URL [ITEM [ITEM]]

See also http --help.

4.1 Examples
Custom HTTP method, HTTP headers and JSON data:

$ http PUT httpbin.org/put X-API-Token:123 name=John

Submitting forms:

$ http -f POST httpbin.org/post hello=World

See the request that is being sent using one of the output options:

$ http -v httpbin.org/get

Build and print a request without sending it using offline mode:

$ http --offline httpbin.org/post hello=offline

Use Github API to post a comment on an issue with authentication:

$ http -a USERNAME POST https://api.github.com/repos/jakubroztocil/httpie/issues/83/comments body='HTTPie is awesome! :heart:'

Upload a file using redirected input:

$ http httpbin.org/post < files/data.json

Download a file and save it via redirected output:

https://github.com/jakubroztocil/httpie/blob/master/httpie/__init__.py#L6
https://developer.github.com/v3/issues/comments/#create-a-comment
https://github.com/jakubroztocil/httpie/issues/83

$ http httpbin.org/image/png > image.png

Download a file wget style:

$ http --download httpbin.org/image/png

Use named sessions to make certain aspects of the communication persistent between requests to the
same host:

$ http --session=logged-in -a username:password httpbin.org/get API-Key:123

$ http --session=logged-in httpbin.org/headers

Set a custom Host header to work around missing DNS records:

$ http localhost:8000 Host:example.com

5 HTTP method
The name of the HTTP method comes right before the URL argument:

$ http DELETE httpbin.org/delete

Which looks similar to the actual Request-Line that is sent:

DELETE /delete HTTP/1.1

When the METHOD argument is omitted from the command, HTTPie defaults to either GET (with no request
data) or POST (with request data).

6 Request URL
The only information HTTPie needs to perform a request is a URL. The default scheme is, somewhat
unsurprisingly, http://, and can be omitted from the argument – http example.org works just fine.

6.1 Querystring parameters
If you find yourself manually constructing URLs with querystring parameters on the terminal, you may
appreciate the param==value syntax for appending URL parameters.

With that, you don’t have to worry about escaping the & separators for your shell. Additionally, any special
characters in the parameter name or value get automatically URL-escaped (as opposed to parameters
specified in the full URL, which HTTPie doesn’t modify).

$ http https://api.github.com/search/repositories q==httpie per_page==1

GET /search/repositories?q=httpie&per_page=1 HTTP/1.1

6.2 URL shortcuts for localhost
Additionally, curl-like shorthand for localhost is supported. This means that, for example :3000 would
expand to http://localhost:3000 If the port is omitted, then port 80 is assumed.

$ http :/foo

GET /foo HTTP/1.1
Host: localhost

$ http :3000/bar

GET /bar HTTP/1.1
Host: localhost:3000

$ http :

GET / HTTP/1.1
Host: localhost

6.3 Other default schemes
When HTTPie is invoked as https then the default scheme is https:// ($ https example.org will
make a request to https://example.org).

You can also use the --default-scheme <URL_SCHEME> option to create shortcuts for other protocols
than HTTP (possibly supported via plugins). Example for the httpie-unixsocket plugin:

Before
$ http http+unix://%2Fvar%2Frun%2Fdocker.sock/info

Create an alias
$ alias http-unix='http --default-scheme="http+unix"'

Now the scheme can be omitted
$ http-unix %2Fvar%2Frun%2Fdocker.sock/info

6.4 --path-as-is
The standard behaviour of HTTP clients is to normalize the path portion of URLs by squashing dot
segments as a typically filesystem would:

$ http -v example.org/./../../etc/password

GET /etc/password HTTP/1.1

The --path-as-is option allows you to disable this behavior:

https://github.com/httpie/httpie-unixsocket

$ http --path-as-is -v example.org/./../../etc/password

GET /../../etc/password HTTP/1.1

7 Request items
There are a few different request item types that provide a convenient mechanism for specifying HTTP
headers, simple JSON and form data, files, and URL parameters.

They are key/value pairs specified after the URL. All have in common that they become part of the actual
request that is sent and that their type is distinguished only by the separator used: :, =, :=, ==, @, =@, and
:=@. The ones with an @ expect a file path as value.

Item Type Description

HTTP Headers Name:Value Arbitrary HTTP header, e.g. X-API-Token:123.

URL parameters
name==value

Appends the given name/value pair as a query string parameter to the
URL. The == separator is used.

Data Fields field=value,
field=@file.txt

Request data fields to be serialized as a JSON object (default), or to be
form-encoded (--form, -f).

Raw JSON fields
field:=json,
field:=@file.json

Useful when sending JSON and one or more fields need to be a
Boolean, Number, nested Object, or an Array, e.g.,
meals:='["ham","spam"]' or pies:=[1,2,3] (note the quotes).

Form File Fields
field@/dir/file

Only available with --form, -f. For example
screenshot@~/Pictures/img.png. The presence of a file field
results in a multipart/form-data request.

Note that data fields aren’t the only way to specify request data: Redirected input is a mechanism for
passing arbitrary request data.

7.1 Escaping rules
You can use \ to escape characters that shouldn’t be used as separators (or parts thereof). For instance,
foo\==bar will become a data key/value pair (foo= and bar) instead of a URL parameter.

Often it is necessary to quote the values, e.g. foo='bar baz'.

If any of the field names or headers starts with a minus (e.g., -fieldname), you need to place all such
items after the special token -- to prevent confusion with --arguments:

$ http httpbin.org/post -- -name-starting-with-dash=foo -Unusual-Header:bar

POST /post HTTP/1.1
-Unusual-Header: bar
Content-Type: application/json

{
 "-name-starting-with-dash": "foo"
}

8 JSON
JSON is the lingua franca of modern web services and it is also the implicit content type HTTPie uses by
default.

Simple example:

$ http PUT httpbin.org/put name=John email=john@example.org

PUT / HTTP/1.1
Accept: application/json, */*;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json
Host: httpbin.org

{
 "name": "John",
 "email": "john@example.org"
}

8.1 Default behaviour
If your command includes some data request items, they are serialized as a JSON object by default.
HTTPie also automatically sets the following headers, both of which can be overwritten:

Content-Type application/json

Accept application/json, */*;q=0.5

8.2 Explicit JSON
You can use --json, -j to explicitly set Accept to application/json regardless of whether you are
sending data (it’s a shortcut for setting the header via the usual header notation:
http url Accept:'application/json, */*;q=0.5'). Additionally, HTTPie will try to detect JSON
responses even when the Content-Type is incorrectly text/plain or unknown.

8.3 Non-string JSON fields
Non-string JSON fields use the := separator, which allows you to embed arbitrary JSON data into the
resulting JSON object. Additionally, text and raw JSON files can also be embedded into fields using =@
and :=@:

$ http PUT httpbin.org/put \
 name=John \ # String (default)
 age:=29 \ # Raw JSON — Number
 married:=false \ # Raw JSON — Boolean
 hobbies:='["http", "pies"]' \ # Raw JSON — Array
 favorite:='{"tool": "HTTPie"}' \ # Raw JSON — Object
 bookmarks:=@files/data.json \ # Embed JSON file
 description=@files/text.txt # Embed text file

PUT /person/1 HTTP/1.1
Accept: application/json, */*;q=0.5
Content-Type: application/json
Host: httpbin.org

{
 "age": 29,
 "hobbies": [
 "http",
 "pies"
],
 "description": "John is a nice guy who likes pies.",
 "married": false,
 "name": "John",
 "favorite": {
 "tool": "HTTPie"
 },
 "bookmarks": {
 "HTTPie": "https://httpie.org",
 }
}

8.4 Raw and complex JSON
Please note that with the request items data field syntax, commands can quickly become unwieldy when
sending complex structures. In such cases, it’s better to pass the full raw JSON data via redirected input,
for example:

$ echo '{"hello": "world"}' | http POST httpbin.org/post

$ http POST httpbin.org/post < files/data.json

Furthermore, this syntax only allows you to send an object as the JSON document, but not an array, etc.
Here, again, the solution is to use redirected input.

9 Forms
Submitting forms is very similar to sending JSON requests. Often the only difference is in adding the
--form, -f option, which ensures that data fields are serialized as, and Content-Type is set to,
application/x-www-form-urlencoded; charset=utf-8. It is possible to make form data the
implicit content type instead of JSON via the config file.

9.1 Regular forms

$ http --form POST httpbin.org/post name='John Smith'

POST /post HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=utf-8

name=John+Smith

9.2 File upload forms
If one or more file fields is present, the serialization and content type is multipart/form-data:

$ http -f POST httpbin.org/post name='John Smith' cv@~/files/data.xml

The request above is the same as if the following HTML form were submitted:

<form enctype="multipart/form-data" method="post" action="http://example.com/jobs">
 <input type="text" name="name" />
 <input type="file" name="cv" />
</form>

Note that @ is used to simulate a file upload form field, whereas =@ just embeds the file content as a
regular text field value.

10 HTTP headers
To set custom headers you can use the Header:Value notation:

$ http httpbin.org/headers User-Agent:Bacon/1.0 'Cookie:valued-visitor=yes;foo=bar' \
 X-Foo:Bar Referer:https://httpie.org/

GET /headers HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Cookie: valued-visitor=yes;foo=bar
Host: httpbin.org
Referer: https://httpie.org/
User-Agent: Bacon/1.0
X-Foo: Bar

10.1 Default request headers
There are a couple of default headers that HTTPie sets:

GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: HTTPie/<version>
Host: <taken-from-URL>

Any of these except Host can be overwritten and some of them unset.

10.2 Empty headers and header un-setting
To unset a previously specified header (such a one of the default headers), use Header::

$ http httpbin.org/headers Accept: User-Agent:

To send a header with an empty value, use Header;:

$ http httpbin.org/headers 'Header;'

10.3 Limiting response headers
The --max-headers=n options allows you to control the number of headers HTTPie reads before giving
up (the default 0, i.e., there’s no limit).

$ http --max-headers=100 httpbin.org/get

11 Offline mode
Use --offline to construct HTTP requests without sending them anywhere. With --offline, HTTPie
builds a request based on the specified options and arguments, prints it to stdout, and then exists. It
works completely offline; no network connection is ever made. This has a number of use cases, including:

Generating API documentation examples that you can copy & paste without sending a request:

$ http --offline POST server.chess/api/games API-Key:ZZZ w=magnus b=hikaru t=180 i=2

$ http --offline MOVE server.chess/api/games/123 API-Key:ZZZ p=b a=R1a3 t=77

Generating raw requests that can be sent with any other client:

1. save a raw request to a file:
$ http --offline POST httpbin.org/post hello=world > request.http

2. send it over the wire with, for example, the fantastic netcat tool:
$ nc httpbin.org 80 < request.http

You can also use the --offline mode for debugging and exploring HTTP and HTTPie, and for “dry
runs”.

--offline has the side-effect of automatically activating --print=HB, i.e., both the request headers
and the body are printed. You can customize the output with the usual output options, with the exception
that there is not response to be printed. You can use --offline in combination with all the other options
(e.g., --session).

12 Cookies
HTTP clients send cookies to the server as regular HTTP headers. That means, HTTPie does not offer
any special syntax for specifying cookies — the usual Header:Value notation is used:

Send a single cookie:

$ http httpbin.org/cookies Cookie:sessionid=foo

GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: sessionid=foo
Host: httpbin.org
User-Agent: HTTPie/0.9.9

Send multiple cookies (note the header is quoted to prevent the shell from interpreting the ;):

$ http httpbin.org/cookies 'Cookie:sessionid=foo;another-cookie=bar'

GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: sessionid=foo;another-cookie=bar
Host: httpbin.org
User-Agent: HTTPie/0.9.9

If you often deal with cookies in your requests, then chances are you’d appreciate the sessions feature.

13 Authentication
The currently supported authentication schemes are Basic and Digest (see auth plugins for more). There
are two flags that control authentication:

--auth, -a Pass a username:password pair as the argument. Or, if you only specify
a username (-a username), you’ll be prompted for the password before
the request is sent. To send an empty password, pass username:. The
username:password@hostname URL syntax is supported as well (but
credentials passed via -a have higher priority).

--auth-type, -A Specify the auth mechanism. Possible values are basic and digest. The
default value is basic so it can often be omitted.

13.1 Basic auth

$ http -a username:password httpbin.org/basic-auth/username/password

13.2 Digest auth

$ http -A digest -a username:password httpbin.org/digest-auth/httpie/username/password

13.3 Password prompt

$ http -a username httpbin.org/basic-auth/username/password

13.4 Empty password

$ http -a username: httpbin.org/headers

13.5 .netrc
Authentication information from your ~/.netrc file is by default honored as well.

For example:

$ cat ~/.netrc
machine httpbin.org

login httpie
password test

$ http httpbin.org/basic-auth/httpie/test
HTTP/1.1 200 OK
[...]

This can be disabled with the --ignore-netrc option:

$ http --ignore-netrc httpbin.org/basic-auth/httpie/test
HTTP/1.1 401 UNAUTHORIZED
[...]

13.6 Auth plugins
Additional authentication mechanism can be installed as plugins. They can be found on the Python
Package Index. Here’s a few picks:

• httpie-api-auth: ApiAuth

• httpie-aws-auth: AWS / Amazon S3

• httpie-edgegrid: EdgeGrid

• httpie-hmac-auth: HMAC

• httpie-jwt-auth: JWTAuth (JSON Web Tokens)

• httpie-negotiate: SPNEGO (GSS Negotiate)

• httpie-ntlm: NTLM (NT LAN Manager)

• httpie-oauth: OAuth

• requests-hawk: Hawk

14 HTTP redirects
By default, HTTP redirects are not followed and only the first response is shown:

$ http httpbin.org/redirect/3

14.1 Follow Location
To instruct HTTPie to follow the Location header of 30x responses and show the final response instead,
use the --follow, -F option:

$ http --follow httpbin.org/redirect/3

14.2 Showing intermediary redirect responses
If you additionally wish to see the intermediary requests/responses, then use the --all option as well:

$ http --follow --all httpbin.org/redirect/3

https://pypi.python.org/pypi?%3Aaction=search&term=httpie&submit=search
https://pypi.python.org/pypi?%3Aaction=search&term=httpie&submit=search
https://github.com/pd/httpie-api-auth
https://github.com/httpie/httpie-aws-auth
https://github.com/akamai-open/httpie-edgegrid
https://github.com/guardian/httpie-hmac-auth
https://github.com/teracyhq/httpie-jwt-auth
https://github.com/ndzou/httpie-negotiate
https://github.com/httpie/httpie-ntlm
https://github.com/httpie/httpie-oauth
https://github.com/mozilla-services/requests-hawk

14.3 Limiting maximum redirects followed
To change the default limit of maximum 30 redirects, use the --max-redirects=<limit> option:

$ http --follow --all --max-redirects=2 httpbin.org/redirect/3

15 Proxies
You can specify proxies to be used through the --proxy argument for each protocol (which is included in
the value in case of redirects across protocols):

$ http --proxy=http:http://10.10.1.10:3128 --proxy=https:https://10.10.1.10:1080 example.org

With Basic authentication:

$ http --proxy=http:http://user:pass@10.10.1.10:3128 example.org

15.1 Environment variables
You can also configure proxies by environment variables ALL_PROXY, HTTP_PROXY and HTTPS_PROXY,
and the underlying Requests library will pick them up as well. If you want to disable proxies configured
through the environment variables for certain hosts, you can specify them in NO_PROXY.

In your ~/.bash_profile:

export HTTP_PROXY=http://10.10.1.10:3128
export HTTPS_PROXY=https://10.10.1.10:1080
export NO_PROXY=localhost,example.com

15.2 SOCKS
Homebrew-installed HTTPie comes with SOCKS proxy support out of the box. To enable SOCKS proxy
support for non-Homebrew installations, you’ll might need to install requests[socks] manually using
pip:

$ pip install -U requests[socks]

Usage is the same as for other types of proxies:

$ http --proxy=http:socks5://user:pass@host:port --proxy=https:socks5://user:pass@host:port example.org

16 HTTPS

16.1 Server SSL certificate verification
To skip the host’s SSL certificate verification, you can pass --verify=no (default is yes):

$ http --verify=no https://httpbin.org/get

16.2 Custom CA bundle
You can also use --verify=<CA_BUNDLE_PATH> to set a custom CA bundle path:

$ http --verify=/ssl/custom_ca_bundle https://example.org

16.3 Client side SSL certificate
To use a client side certificate for the SSL communication, you can pass the path of the cert file with
--cert:

$ http --cert=client.pem https://example.org

If the private key is not contained in the cert file you may pass the path of the key file with --cert-key:

$ http --cert=client.crt --cert-key=client.key https://example.org

16.4 SSL version
Use the --ssl=<PROTOCOL> to specify the desired protocol version to use. This will default to SSL v2.3
which will negotiate the highest protocol that both the server and your installation of OpenSSL support.
The available protocols are ssl2.3, ssl3, tls1, tls1.1, tls1.2, tls1.3. (The actually available set
of protocols may vary depending on your OpenSSL installation.)

Specify the vulnerable SSL v3 protocol to talk to an outdated server:
$ http --ssl=ssl3 https://vulnerable.example.org

17 Output options
By default, HTTPie only outputs the final response and the whole response message is printed (headers
as well as the body). You can control what should be printed via several options:

--headers, -h Only the response headers are printed.

--body, -b Only the response body is printed.

--verbose, -v Print the whole HTTP exchange (request and response). This option also
enables --all (see below).

--print, -p Selects parts of the HTTP exchange.

--verbose can often be useful for debugging the request and generating documentation examples:

$ http --verbose PUT httpbin.org/put hello=world
PUT /put HTTP/1.1
Accept: application/json, */*;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json
Host: httpbin.org
User-Agent: HTTPie/0.2.7dev

{
 "hello": "world"
}

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 477

Content-Type: application/json
Date: Sun, 05 Aug 2012 00:25:23 GMT
Server: gunicorn/0.13.4

{
 […]
}

17.1 What parts of the HTTP exchange should be printed
All the other output options are under the hood just shortcuts for the more powerful --print, -p. It
accepts a string of characters each of which represents a specific part of the HTTP exchange:

Character Stands for

H request headers

B request body

h response headers

b response body

Print request and response headers:

$ http --print=Hh PUT httpbin.org/put hello=world

17.2 Viewing intermediary requests/responses
To see all the HTTP communication, i.e. the final request/response as well as any possible intermediary
requests/responses, use the --all option. The intermediary HTTP communication include followed
redirects (with --follow), the first unauthorized request when HTTP digest authentication is used
(--auth=digest), etc.

Include all responses that lead to the final one:
$ http --all --follow httpbin.org/redirect/3

The intermediary requests/response are by default formatted according to --print, -p (and its
shortcuts described above). If you’d like to change that, use the --history-print, -P option. It takes
the same arguments as --print, -p but applies to the intermediary requests only.

Print the intermediary requests/responses differently than the final one:
$ http -A digest -a foo:bar --all -p Hh -P H httpbin.org/digest-auth/auth/foo/bar

17.3 Conditional body download
As an optimization, the response body is downloaded from the server only if it’s part of the output. This is
similar to performing a HEAD request, except that it applies to any HTTP method you use.

Let’s say that there is an API that returns the whole resource when it is updated, but you are only
interested in the response headers to see the status code after an update:

$ http --headers PATCH httpbin.org/patch name='New Name'

Since we are only printing the HTTP headers here, the connection to the server is closed as soon as all
the response headers have been received. Therefore, bandwidth and time isn’t wasted downloading the

body which you don’t care about. The response headers are downloaded always, even if they are not part
of the output

18 Redirected Input
The universal method for passing request data is through redirected stdin (standard input)—piping. Such
data is buffered and then with no further processing used as the request body. There are multiple useful
ways to use piping:

Redirect from a file:

$ http PUT httpbin.org/put X-API-Token:123 < files/data.json

Or the output of another program:

$ grep '401 Unauthorized' /var/log/httpd/error_log | http POST httpbin.org/post

You can use echo for simple data:

$ echo '{"name": "John"}' | http PATCH httpbin.org/patch X-API-Token:123

You can also use a Bash here string:

$ http httpbin.org/post <<<'{"name": "John"}'

You can even pipe web services together using HTTPie:

$ http GET https://api.github.com/repos/jakubroztocil/httpie | http POST httpbin.org/post

You can use cat to enter multiline data on the terminal:

$ cat | http POST httpbin.org/post
<paste>
^D

$ cat | http POST httpbin.org/post Content-Type:text/plain
- buy milk
- call parents
^D

On OS X, you can send the contents of the clipboard with pbpaste:

$ pbpaste | http PUT httpbin.org/put

Passing data through stdin cannot be combined with data fields specified on the command line:

$ echo 'data' | http POST example.org more=data # This is invalid

To prevent HTTPie from reading stdin data you can use the --ignore-stdin option.

18.1 Request data from a filename
An alternative to redirected stdin is specifying a filename (as @/path/to/file) whose content is used
as if it came from stdin.

It has the advantage that the Content-Type header is automatically set to the appropriate value based
on the filename extension. For example, the following request sends the verbatim contents of that XML file
with Content-Type: application/xml:

$ http PUT httpbin.org/put @files/data.xml

19 Terminal output
HTTPie does several things by default in order to make its terminal output easy to read.

19.1 Colors and formatting
Syntax highlighting is applied to HTTP headers and bodies (where it makes sense). You can choose your
preferred color scheme via the --style option if you don’t like the default one. There dozens of styles
available, here are just a few special or notable ones:

auto Follows your terminal ANSI color styles. This is the default style used by HTTPie.

default Default styles of the underlying Pygments library. Not actually used by default by
HTTPie. You can enable it with --style=default

monokai A popular color scheme. Enable with --style=monokai.

fruity A bold, colorful scheme. Enable with --style=fruity.

… See $ http --help for all the possible --style values.

Also, the following formatting is applied:

• HTTP headers are sorted by name.

• JSON data is indented, sorted by keys, and unicode escapes are converted to the characters they
represent.

One of these options can be used to control output processing:

--pretty=all Apply both colors and formatting. Default for terminal output.

--pretty=colors Apply colors.

--pretty=format Apply formatting.

--pretty=none Disables output processing. Default for redirected output.

19.2 Binary data
Binary data is suppressed for terminal output, which makes it safe to perform requests to URLs that send
back binary data. Binary data is suppressed also in redirected, but prettified output. The connection is
closed as soon as we know that the response body is binary,

$ http httpbin.org/bytes/2000

You will nearly instantly see something like this:

HTTP/1.1 200 OK
Content-Type: application/octet-stream

+---+
| NOTE: binary data not shown in terminal |
+---+

20 Redirected output
HTTPie uses a different set of defaults for redirected output than for terminal output. The differences
being:

• Formatting and colors aren’t applied (unless --pretty is specified).

• Only the response body is printed (unless one of the output options is set).

• Also, binary data isn’t suppressed.

The reason is to make piping HTTPie’s output to another programs and downloading files work with no
extra flags. Most of the time, only the raw response body is of an interest when the output is redirected.

Download a file:

$ http httpbin.org/image/png > image.png

Download an image of Octocat, resize it using ImageMagick, upload it elsewhere:

$ http octodex.github.com/images/original.jpg | convert - -resize 25% - | http example.org/Octocats

Force colorizing and formatting, and show both the request and the response in less pager:

$ http --pretty=all --verbose httpbin.org/get | less -R

The -R flag tells less to interpret color escape sequences included HTTPie`s output.

You can create a shortcut for invoking HTTPie with colorized and paged output by adding the following to
your ~/.bash_profile:

function httpless {
 # `httpless example.org'
 http --pretty=all --print=hb "$@" | less -R;
}

21 Download mode
HTTPie features a download mode in which it acts similarly to wget.

When enabled using the --download, -d flag, response headers are printed to the terminal (stderr),
and a progress bar is shown while the response body is being saved to a file.

$ http --download https://github.com/jakubroztocil/httpie/archive/master.tar.gz

HTTP/1.1 200 OK
Content-Disposition: attachment; filename=httpie-master.tar.gz
Content-Length: 257336
Content-Type: application/x-gzip

Downloading 251.30 kB to "httpie-master.tar.gz"
Done. 251.30 kB in 2.73862s (91.76 kB/s)

21.1 Downloaded filename
There are three mutually exclusive ways through which HTTPie determines the output filename (with
decreasing priority):

1. You can explicitly provide it via --output, -o. The file gets overwritten if it already exists (or
appended to with --continue, -c).

2. The server may specify the filename in the optional Content-Disposition response header. Any
leading dots are stripped from a server-provided filename.

3. The last resort HTTPie uses is to generate the filename from a combination of the request URL and
the response Content-Type. The initial URL is always used as the basis for the generated filename
— even if there has been one or more redirects.

To prevent data loss by overwriting, HTTPie adds a unique numerical suffix to the filename when
necessary (unless specified with --output, -o).

21.2 Piping while downloading
You can also redirect the response body to another program while the response headers and progress are
still shown in the terminal:

$ http -d https://github.com/jakubroztocil/httpie/archive/master.tar.gz | tar zxf -

21.3 Resuming downloads
If --output, -o is specified, you can resume a partial download using the --continue, -c option.
This only works with servers that support Range requests and 206 Partial Content responses. If the
server doesn’t support that, the whole file will simply be downloaded:

$ http -dco file.zip example.org/file

21.4 Other notes

• The --download option only changes how the response body is treated.

• You can still set custom headers, use sessions, --verbose, -v, etc.

• --download always implies --follow (redirects are followed).

• --download also implies --check-status (error HTTP status will result in a non-zero exist static
code).

• HTTPie exits with status code 1 (error) if the body hasn’t been fully downloaded.

• Accept-Encoding cannot be set with --download.

22 Streamed responses
Responses are downloaded and printed in chunks which allows for streaming and large file downloads
without using too much memory. However, when colors and formatting is applied, the whole response is
buffered and only then processed at once.

22.1 Disabling buffering
You can use the --stream, -S flag to make two things happen:

1. The output is flushed in much smaller chunks without any buffering, which makes HTTPie behave
kind of like tail -f for URLs.

2. Streaming becomes enabled even when the output is prettified: It will be applied to each line of the
response and flushed immediately. This makes it possible to have a nice output for long-lived
requests, such as one to the Twitter streaming API.

22.2 Examples use cases
Prettified streamed response:

$ http --stream -f -a YOUR-TWITTER-NAME https://stream.twitter.com/1/statuses/filter.json track='Justin Bieber'

Streamed output by small chunks à la tail -f:

Send each new tweet (JSON object) mentioning "Apple" to another
server as soon as it arrives from the Twitter streaming API:
$ http --stream -f -a YOUR-TWITTER-NAME https://stream.twitter.com/1/statuses/filter.json track=Apple \
| while read tweet; do echo "$tweet" | http POST example.org/tweets ; done

23 Sessions
By default, every request HTTPie makes is completely independent of any previous ones to the same
host.

However, HTTPie also supports persistent sessions via the --session=SESSION_NAME_OR_PATH
option. In a session, custom HTTP headers (except for the ones starting with Content- or If-),
authentication, and cookies (manually specified or sent by the server) persist between requests to the
same host.

Create a new session:
$ http --session=./session.json httpbin.org/headers API-Token:123

Inspect / edit the generated session file:
$ cat session.json

Re-use the existing session — the API-Token header will be set:
$ http --session=./session.json httpbin.org/headers

All session data, including credentials, cookie data, and custom headers are stored in plain text. That
means session files can also be created and edited manually in a text editor—they are regular JSON. It
also means that they can be read by anyone who has access to the session file.

23.1 Named sessions
You can create one or more named session per host. For example, this is how you can create a new
session named user1 for httpbin.org:

$ http --session=user1 -a user1:password httpbin.org/get X-Foo:Bar

From now on, you can refer to the session by its name (user1). When you choose to use the session
again, any previously specified authentication or HTTP headers will automatically be set:

$ http --session=user1 httpbin.org/get

To create or reuse a different session, simple specify a different name:

$ http --session=user2 -a user2:password httpbin.org/get X-Bar:Foo

Named sessions’s data is stored in JSON files in the the sessions subdirectory of the config directory:
~/.httpie/sessions/<host>/<name>.json
(%APPDATA%\httpie\sessions\<host>\<name>.json on Windows).

If you have executed the above commands on a unix machine, you should be able list the generated
sessions files using:

$ ls -l ~/.httpie/sessions/httpbin.org

23.2 Anonymous sessions
Instead of a name, you can also directly specify a path to a session file. This allows for sessions to be
re-used across multiple hosts:

Create a session:
$ http --session=/tmp/session.json example.org

Use the session to make a request to another host:
$ http --session=/tmp/session.json admin.example.org

You can also refer to a previously created named session:
$ http --session=~/.httpie/sessions/another.example.org/test.json example.org

When creating anonymous sessions, please remember to always include at least one /, even if the
session files is located in the current directory (i.e., --session=./session.json instead of just
--session=session.json), otherwise HTTPie assumes a named session instead.

23.3 Readonly session
To use an existing session file without updating it from the request/response exchange after it has been
created, specify the session name via --session-read-only=SESSION_NAME_OR_PATH instead.

If the session file doesn’t exist, then it is created:
$ http --session-read-only=./ro-session.json httpbin.org/headers Custom-Header:orig-value

But it is not updated:
$ http --session-read-only=./ro-session.json httpbin.org/headers Custom-Header:new-value

24 Config
HTTPie uses a simple config.json file. The file doesn’t exist by default but you can create it manually.

24.1 Config file directory
The default location of the configuration file is ~/.httpie/config.json (or
%APPDATA%\httpie\config.json on Windows).

The config directory can be changed by setting the $HTTPIE_CONFIG_DIR environment variable:

$ export HTTPIE_CONFIG_DIR=/tmp/httpie
$ http httpbin.org/get

To view the exact location run http --debug.

24.2 Configurable options
Currently HTTPie offers a single configurable option:

24.2.1 default_options
An Array (by default empty) of default options that should be applied to every invocation of HTTPie.

For instance, you can use this config option to change your default color theme:

$ cat ~/.httpie/config.json

{
 "default_options": [
 "--style=fruity"
]
}

Even though it is technically possible to include there any of HTTPie’s options, it is not recommended to
modify the default behaviour in a way that would break your compatibility with the wider world as that can
generate a lot of confusion.

24.3 Un-setting previously specified options
Default options from the config file, or specified any other way, can be unset for a particular invocation via
--no-OPTION arguments passed on the command line (e.g., --no-style or --no-session).

25 Scripting
When using HTTPie from shell scripts, it can be handy to set the --check-status flag. It instructs
HTTPie to exit with an error if the HTTP status is one of 3xx, 4xx, or 5xx. The exit status will be 3 (unless
--follow is set), 4, or 5, respectively.

#!/bin/bash

if http --check-status --ignore-stdin --timeout=2.5 HEAD httpbin.org/get &> /dev/null; then
 echo 'OK!'
else
 case $? in
 2) echo 'Request timed out!' ;;
 3) echo 'Unexpected HTTP 3xx Redirection!' ;;
 4) echo 'HTTP 4xx Client Error!' ;;
 5) echo 'HTTP 5xx Server Error!' ;;
 6) echo 'Exceeded --max-redirects=<n> redirects!' ;;
 *) echo 'Other Error!' ;;
 esac
fi

25.1 Best practices
The default behaviour of automatically reading stdin is typically not desirable during non-interactive
invocations. You most likely want to use the --ignore-stdin option to disable it.

It is a common gotcha that without this option HTTPie seemingly hangs. What happens is that when
HTTPie is invoked for example from a cron job, stdin is not connected to a terminal. Therefore, rules for
redirected input apply, i.e., HTTPie starts to read it expecting that the request body will be passed through.
And since there’s no data nor EOF, it will be stuck. So unless you’re piping some data to HTTPie, this flag
should be used in scripts.

Also, it might be good to set a connection --timeout limit to prevent your program from hanging if the
server never responds.

26 Meta

26.1 Interface design
The syntax of the command arguments closely corresponds to the actual HTTP requests sent over the
wire. It has the advantage that it’s easy to remember and read. It is often possible to translate an HTTP
request to an HTTPie argument list just by inlining the request elements. For example, compare this HTTP
request:

POST /post HTTP/1.1
Host: httpbin.org
X-API-Key: 123
User-Agent: Bacon/1.0
Content-Type: application/x-www-form-urlencoded

name=value&name2=value2

with the HTTPie command that sends it:

$ http -f POST httpbin.org/post \
 X-API-Key:123 \
 User-Agent:Bacon/1.0 \
 name=value \
 name2=value2

Notice that both the order of elements and the syntax is very similar, and that only a small portion of the
command is used to control HTTPie and doesn’t directly correspond to any part of the request (here it’s
only -f asking HTTPie to send a form request).

The two modes, --pretty=all (default for terminal) and --pretty=none (default for redirected
output), allow for both user-friendly interactive use and usage from scripts, where HTTPie serves as a
generic HTTP client.

As HTTPie is still under heavy development, the existing command line syntax and some of the
--OPTIONS may change slightly before HTTPie reaches its final version 1.0. All changes are recorded in
the change log.

26.2 User support
Please use the following support channels:

• GitHub issues for bug reports and feature requests.

• Our Gitter chat room to ask questions, discuss features, and for general discussion.

https://github.com/jkbr/httpie/issues
https://gitter.im/jkbrzt/httpie

• StackOverflow to ask questions (please make sure to use the httpie tag).

• Tweet directly to @clihttp.

• You can also tweet directly to @jakubroztocil.

26.3 Related projects

26.3.1 Dependencies
Under the hood, HTTPie uses these two amazing libraries:

• Requests — Python HTTP library for humans

• Pygments — Python syntax highlighter

26.3.2 HTTPie friends
HTTPie plays exceptionally well with the following tools:

• jq — CLI JSON processor that works great in conjunction with HTTPie

• http-prompt — interactive shell for HTTPie featuring autocomplete and command syntax highlighting

26.3.3 Alternatives

• httpcat — a lower-level sister utility of HTTPie for constructing raw HTTP requests on the command
line.

• curl — a "Swiss knife" command line tool and an exceptional library for transferring data with URLs.

26.4 Contributing
See CONTRIBUTING.rst.

26.5 Change log
See CHANGELOG.

26.6 Artwork

• Logo by Cláudia Delgado.

• Animation by Allen Smith of GitHub.

26.7 Licence
BSD-3-Clause: LICENSE.

26.8 Authors
Jakub Roztocil (@jakubroztocil) created HTTPie and these fine people have contributed.

https://stackoverflow.com
https://stackoverflow.com/questions/tagged/httpie
https://twitter.com/clihttp
https://twitter.com/jakubroztocil
https://python-requests.org
https://pygments.org/
https://stedolan.github.io/jq/
https://github.com/eliangcs/http-prompt
https://github.com/jakubroztocil/httpcat
https://curl.haxx.se
https://github.com/jakubroztocil/httpie/blob/master/CONTRIBUTING.rst
https://github.com/jakubroztocil/httpie/blob/master/CHANGELOG.rst
https://github.com/claudiatd/httpie-artwork
https://github.com/claudiatd
https://raw.githubusercontent.com/jakubroztocil/httpie/master/httpie.gif
https://github.com/loranallensmith
https://github.com/jakubroztocil/httpie/blob/master/LICENSE
https://roztocil.co
https://twitter.com/jakubroztocil
https://github.com/jakubroztocil/httpie/contributors

	1 About this document
	2 Main features
	3 Installation
	3.1 macOS
	3.2 Linux
	3.3 Windows, etc.
	3.4 Python version
	3.5 Unstable version

	4 Usage
	4.1 Examples

	5 HTTP method
	6 Request URL
	6.1 Querystring parameters
	6.2 URL shortcuts for localhost
	6.3 Other default schemes
	6.4 --path-as-is

	7 Request items
	7.1 Escaping rules

	8 JSON
	8.1 Default behaviour
	8.2 Explicit JSON
	8.3 Non-string JSON fields
	8.4 Raw and complex JSON

	9 Forms
	9.1 Regular forms
	9.2 File upload forms

	10 HTTP headers
	10.1 Default request headers
	10.2 Empty headers and header un-setting
	10.3 Limiting response headers

	11 Offline mode
	12 Cookies
	13 Authentication
	13.1 Basic auth
	13.2 Digest auth
	13.3 Password prompt
	13.4 Empty password
	13.5 .netrc
	13.6 Auth plugins

	14 HTTP redirects
	14.1 Follow Location
	14.2 Showing intermediary redirect responses
	14.3 Limiting maximum redirects followed

	15 Proxies
	15.1 Environment variables
	15.2 SOCKS

	16 HTTPS
	16.1 Server SSL certificate verification
	16.2 Custom CA bundle
	16.3 Client side SSL certificate
	16.4 SSL version

	17 Output options
	17.1 What parts of the HTTP exchange should be printed
	17.2 Viewing intermediary requests/responses
	17.3 Conditional body download

	18 Redirected Input
	18.1 Request data from a filename

	19 Terminal output
	19.1 Colors and formatting
	19.2 Binary data

	20 Redirected output
	21 Download mode
	21.1 Downloaded filename
	21.2 Piping while downloading
	21.3 Resuming downloads
	21.4 Other notes

	22 Streamed responses
	22.1 Disabling buffering
	22.2 Examples use cases

	23 Sessions
	23.1 Named sessions
	23.2 Anonymous sessions
	23.3 Readonly session

	24 Config
	24.1 Config file directory
	24.2 Configurable options
	24.2.1 default_options

	24.3 Un-setting previously specified options

	25 Scripting
	25.1 Best practices

	26 Meta
	26.1 Interface design
	26.2 User support
	26.3 Related projects
	26.3.1 Dependencies
	26.3.2 HTTPie friends
	26.3.3 Alternatives

	26.4 Contributing
	26.5 Change log
	26.6 Artwork
	26.7 Licence
	26.8 Authors

